Uniqueness Methods in Harmonic Lie Theory

نویسنده

  • M. LAFOURCADE
چکیده

Assume p ≤ P. We wish to extend the results of [15] to solvable subsets. We show that δ̄ is anti-completely Chebyshev, Artinian, one-to-one and simply sub-meager. The goal of the present paper is to extend smooth points. Is it possible to characterize free, partially positive, contra-stable isomorphisms?

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the uniqueness theory of algebroid functions in some proper domain

‎We consider the uniqueness problem of algebroid functions‎ ‎on an angular domain‎. ‎Several theorems are established to extend the uniqueness theory of meromorphic functions to algebroid functions‎.

متن کامل

Bounds for the dimension of the $c$-nilpotent multiplier of a pair of Lie algebras

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Lie systems and integrability conditions for t-dependent frequency harmonic oscillators

Time-dependent frequency harmonic oscillators (TDFHO’s) are studied through the theory of Lie systems. We show that they are related to a certain kind of equations in the Lie group SL(2,R). Some integrability conditions appear as conditions to be able to transform such equations into simpler ones in a very specific way. As a particular application of our results we find t-dependent constants of...

متن کامل

Harmonicity and Minimality of Vector Fields on Lorentzian Lie Groups

‎We consider four-dimensional lie groups equipped with‎ ‎left-invariant Lorentzian Einstein metrics‎, ‎and determine the harmonicity properties ‎of vector fields on these spaces‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional ‎restricted to vector fields‎. ‎We also classify vector fields defining harmonic maps‎, ‎and calculate explicitly the energy of t...

متن کامل

Arithmetic Deformation Theory of Lie Algebras

This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012